Non-hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk

نویسنده

  • G. M. Cicuta
چکیده

We study a class of tridiagonal matrix models, the " q-roots of unity " models, which includes the sign (q = 2) and the clock (q = ∞) models by Feinberg and Zee. We find that the eigenvalue densities are bounded by and have the symmetries of the regular polygon with 2q sides, in the complex plane. Furthermore the averaged traces of M k are integers that count closed random walks on the line, such that each site is visited a number of times multiple of q. We obtain an explicit evaluation for them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Weak-Form Efficient Capital Market Case Study: TSE and DJUS Indices

The present study investigated weak-form market information efficiency in Tehran security exchange (TSE) as an emerging market and in Dow Jones United States security exchange (DJUS) as a developed market based on random walk model. In each market, the random walk model was examined using daily and monthly returns of a set of indices. The results of the parametric and non-parametric tests indic...

متن کامل

Long Memory in Stock Returns: A Study of Emerging Markets

The present study aimed at investigating the existence of long memory properties in ten emerging stock markets across the globe. When return series exhibit long memory, it indicates that observed returns are not independent over time. If returns are not independent, past returns can help predict future returns, thereby violating the market efficiency hypothesis. It poses a serious challenge to ...

متن کامل

A Study of the Hr and Extended Hr Methods for the Standard Eigenvalue Problem

The QR method is a very eecient method for computing the spectrum of Hermitian tridiagonal matrices since the tridiagonal form is preserved over the iterations. For non-Hermitian tridiagonal matrices the QR method destroys the tridiagonal form. In this report we study two methods, the HR and the XHR methods, that preserve tridiagonal form for pseudo-Hermitian matrices. We also report results fr...

متن کامل

Eigenvalue Distributions of Large Hermitian Matrices; Wigner’s Semi-circle Law and a Theorem of Kac, Murdock, and Szegij

Wigner’s semi-circle law describes the eigenvalue distribution of certain large random Hermitian matrices. A new proof is given for the case of Gaussian matrices, that involves reducing a random matrix to tridiagonal form by a method that is well known as a technique for numerical computation of eigenvalues. The result is a generalized Toeplitz matrix whose eigenvalue distribution can be found ...

متن کامل

Brownian motion and random matrices

This workshop, sponsored by AIM and NSF, was devoted to β-generalizations of the classical ensembles in random matrix theory. Recent advances have put stochastic methods on center stage, thus explaining the workshop title ‘Brownian motion and random matrices’. One recalls that a viewpoint on classical random matrix theory, generalizing Dyson’s three fold way, is that physically relevant ensembl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999